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Notice on Relative Weak Extension ��������Property

A quasivariety of algebras is an universal Horn class of algebras containing the one element 
algebra. Equivalently, a quasivariety is a class of algebras of the same similarity type which is 
closed under isomorphic images, subalgebras, direct products (including the direct product 
of an empty family) and ultraproducts. A variety is a quasivariety which is closed under 
homomorphic images. Further we assume that all considered algebras are of the same finite 
similarity type and all the classes of algebras to be abstract, that is, together with any algebra, 
such  class contains all its isomorphic copies.

Let R be a quasivariety. A congruence θ on algebra A is called an R-congruence provided 
A/θ ∈ R.  The set ConR A of all R-congruences of A forms a complete algebraic lattice which is a 
meet-subsemilattice of the lattice Con A of all congruences of A. These lattices have the same 
the least and largest elements, denoted 0A and 1A. They are the identity relation and the universal 
relation over A. For each subset X of A×A there exists the least R-congruence containing X 
and we denote it by CgR(X). If  X consists of one element {(a,b)} we simply write CgR(a,b) and 
call such a congruence an R-principal congruence or a relative principal congruence. They are 
the identity relation and the universal relation over A. In event R is a variety, the lattice ConR 
A coincides with Con A.

Let R be a subquasivariety of quasivariety K. A quasivariety R is said to have the weak 
extension property relative K (R |= K-WEP, in short) if for all A ∈ R and α, β ∈ ConK A, α ∩ β= 0A 
implies CgR(α) ∩ CgR(β) =  0A. If K is clear under the context we say that R has relative weak 
extension property and write R |= RWEP. If K is a variety then the definition of RWEP coincides 
with usual  definition of weak extension property. 

The concept of the weak extension property was introduced by K.Kearnes and R.McKenzie 
in [4], where they extended Commutator Theory into relative congruence modular quasivariety 
and, in particular, proved that relative congruence modular quasivariety has the weak extension 
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property. Also every relative semi-distributive quasivariety has the weak extension property. 
This result was obtained in [2]. 

It is easy to see that every quasivariety R having WEP has a weak extension property relative 
any quasivariety K containing R. Also every relative subvariety of given quasivariety K has K-WEP. 
In this notice we show that there exist quasivarieties R and K such that  R  has  K-WEP, and R is 
not relative variety and has no WEP. Also we extend some basic results for quasivarieties with 
WEP on quasivarieties with RWEP. 

The basic results and definitions on Universal algebra and Lattice theory can be found in 
textbooks[1,3,5]. 

1. Quasivarieties with RWEP.  The natural examples of quasivarieties with RWEP are:
i) R is relative subvariety of  K, that is, R is an intersection of quasivariety K and some variety 

V.
ii) If R has WEP then R has  K-WEP for every  quasivariety K  containing R.
The main purpose of this section is to show that there are quasivarieties R, K such that R 

has K-WEP,   R is not relative subvariety of  K and R has no WEP.
For this we need the following necessary and sufficient conditions of RWEP for locally 

finite quasivarieties. 
Lemma 1.  Let R be a subquasivariety of locally finite quasivariety K . Then R  has the weak 

extension property relative K  if and only if for all finite A ∈ R  and α ∈ ConK A, if β is maximal 
in ConK A with respect to satisfying α ∩ β = 0A, then β ∈ ConR A.

Proof. ⇒.  Let A ∈ R be a finite algebra, α ∈ ConK A and α ∩ β = 0A for some congruence β 
maximal in Con A. By K-WEP, we get CgR(α) ∩ CgR(β) =  0A. Since β maximal in Con A we obtain 
β = CgR(β). That is, β is an R-congruence.

⇐. Let α ∩ β = 0A for some K-congruences α, β on A. Since A is a finite there is a maximal 
K-congruence α’ such that α ⊆ α’ and α’ ∩ β = 0A. By condition of lemma, α’∈ ConR A. By the 
same arguments, there is R-congruences β’ such that β ⊆ β’ and α’ ∩ β’ = 0A. So as CgR(α) ⊆ α’ 
and CgR(β) ⊆ β’ we obtain CgR(α) ∩ CgR(β)=0A.  

The similar condition for WEP was found in [6].
Example. Let A be the five elements meet semilattice with the least and the largest elements 

0 and 1, respectively, and  additional one unary operation f , four constants a, b, с, 0 satisfying 
the following relations  a < c , b < c, b ≠ a, f1 =  0 and fx = x for all x ∈ {a, b, c, 0}. Let  R be the least 
quasivariety containing algebra A, and K  the least quasivariety containing algebras A, Ac where 
Ac = A/θ(0,c). Then R has K-WEP and, also R is not relative subvariety of K and has no WEP.

Proof.  Since the quasi-identity 
(∀xy)[c = 0 → x = y] ,

is true in A and false in Ac we get R is not relative subvariety of  K. 
Since the quasi-identities

(∀xy)[a = 0 → x = y] and (∀xy)[b = 0 → x = y]
are true in A we get θR(0, a) = θR(0, b). On the other hand, θ(0, a)∩θ(0, b) = 0A. Therefore, 

R has no WEP. 
Let A0 be the four elements subalgebra of A. Since A has one proper subalgebra A0 the class 

of all relative subdirectly R-irreducible algebras consists A and A0. By the same argument, the 
class of all relative subdirectly K-irreducible algebras consists A, A0 and Ac. 
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Now let B ∈ R  be a finite subdirect product of algebras Ai , i = 1,…, k , and  Ai ∈ S(A) for all  
i = 1,…, k. Let θK(u, v) be a minimal congruence in ConK B for some u,v ∈ B. Since (u ∧ w,v ∧ 
w)∈ θK(u, v) for any w ∈ B and θK(u, v) is minimal we may assume u > v and u, v are minimal 
elements with such property. Put u = (u1,..., uk), v = (v1,..., vk) and vi < ui for some i ≤  k. Assume 
ui=1. Then vi < 1 and, by definition of operation f, we have f(1) = 0 and f(vi) = vi. Hence f(u) ≤ 
u,  f(v) ≤ v and f(v) is not less then f(u), or f(u) = f(v). 

Suppose vi < c. Since element c = (c ,…, c) belongs to B we have v∧c < u∧c < u and (v∧c, u∧c) 
∈ θ(u,v). This is impossible because pair (u,v) is minimal.  Hence vi = с. Since (f(u),f(v)) ∈ θK(u,v)  
we have (f(u) ∧ f(v),f(v)) ∈ θK(u,v) and f(u) ∧ f(v) < u.  This is impossible by minimality of pair 
(u,v). So we have ui < 1 for all i = 1,…, k. Therefore, we obtain  (0,..., 0) ≤ v < u < (c,..., c). 

Let γ be a maximal K-congruence such that γ ∩ θK(u,v) = 0. Then the factor-algebra B/γ is 
relative subdirectly K-irreducible algebra, that is, B/γ ∈ {A, A0, Ac}. If B/γ ∈ {A, A0} then γ ∈ ConK 
B. Now, let B/γ = Ac. Then ((0,..., 0), (c,..., c)) ∈ γ. Since (0, ...,0) < v < u < (c,..., c) we have (u,v) ∈ 
γ. But γ ∩ θK(u,v) = 0.����������������������   Contrad�������������� iction. Hence γ ∈ ConK B. By Lemma 1, we get that R has weak 
extension property relative K.  

2. Covers of quasivarieties with RWEP. The set of all subquasivarieties of given 
quasivariety R forms a complete coalgebraic lattice under inclusion which is called  quasivariety 
lattice of R. In [2] have been proved that if R is a quasivariety with the weak extension property 
that is included in a finitely generated quasivariety K, then R is finitely axiomatizable relative to 
K. Actually, it was proved that R has a finite number covers in the quasivariety lattices of K. The 
idea of proof the above result gives us possibility to extend this theorem to the quasivarieties 
having relative weak extension property.

Theorem. Let R, K are quasivarieties, R ⊆ K and K a finitely generated quasivariety. If R has 
K-WEP, then R has a finite number covers in the quasivariety lattice of K. In particular, if K is 
finitely axiomatizable then R is finitely axiomatizable too.  

Proof. We just repeat arguments of the proof of Theorem 4 [2] with some additions.
Let n be an integer not less than the cardinality of any of the generators of K. Let m be 

the maximum size of an n-generated subalgebra of any algebra in K. We may assume that   
R ⊂ K. Assume A is a finite algebra in K \ R. For X, Y ⊆ ConK A, we define X «_Y iff for every _α ∈ 
Y there exists _β ∈ X such that _β ≤ α. Notice that « restricted to antichains in ConK A is a partial 
order. Let X be an antichain in ConK A whose intersection is 0A and such that for each _α ∈ X, 
the quotient algebra A/α_ has at most n elements. Notice that such X exists for A ∈ K since n 
bounds the cardinality of the generators of K. Now, among all antichains Y in ConK A with X « 
Y and with the intersection of Y equal to 0A, we choose one, say Z, that is _«-maximal. It follows 
from the choice of Z that each member of Z is a meet-irreducible element of ConK A. Since A 
is outside of R, we can choose γ in Z so that A/γ ∉ R. Let δ_ be the unique cover of γ in ConK A. 
Since, by the choice, Z is «-maximal, there is a pair (a, b) in AxA such that (a, b) ∈ δ∩∩(Z\{γ}) 
and a ≠ b. Choose a0, . . . , ak−1 in A to be a selector set for all the γ – equivalence classes in A with 
a0 = a and a1 = b. As X « Z, it follows that k  ≤  n. 

Let B be the subalgebra of A generated by a0, . . . , ak−1. As k ≤ n, B has at most m elements. 
Let γ′ and σ denote the restrictions of γ and ∩ (Z \ {γ}) to the algebra B, respectively.������������  Obviously��,  
γ′ ∩ σ = 0B. We now want to show that B ∉ R. To this effect suppose otherwise that B ∈ R. Then, 
by K-WEP of R, there are R-congruences γ′R  and σR  on B that extend γ′ and σ, respectively, and 
are such that  γ′R ∩ σR = 0B. As a, b ∈ B and  (a, b) ∈ ∩(Z \ {γ}), it follows that (a, b) ∈ σ_≤ σR. 
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This implies (a, b) ∉ γ′R. As B is a subalgebra of A that is generated by a selector set for all the 
γ-equivalence classes in A, it follows that B/γ′ is isomorphic to A/γ. Thus γ′ has the unique cover 
in ConK B to which (a, b) belongs. This implies that γ′R = γ′ for otherwise γ′R would be above 
this unique cover and as a consequence (a, b) would belong to γ′R. But A/γ ∉ R and so B/γ’ ∉ R. 
Hence B/γ′R ∉ R, a contradiction. Thus B ∉ R. _

So we obtain that any finite algebra in K \ R  has a subalgebra of at most m elements that 
lies outside of R. Since K is a locally finite, the number of m-elements algebras is finite. This 
means that R has a finite number covers in the quasivariety lattice of K. 

To prove the second part of theorem, it is enough to show that R has a finite quasi-equational 
basis relative K. 

The fact that any finite algebra in K \ R  has a subalgebra of at most m elements which 
lies outside of R implies that there is no decreasing chain of quasivarieties reaching on the 
quasivariety R. Let R1,R2,…,Rk are all covers of quasivariety R. And let q(i) be a quasi-identity that 
is true in R and false in Ri ,  i = 1,2,…,k. Put S=Mod({q(i) :  i<k+1}) ∩ K. It is easy R⊆S.  Suppose 
R ≠ S. Since  there are no decreasing chains reaching on R we get S contains Ri for some i ≤ k. 
Therefore, q(i) is false in Ri. This is impossible by definition of q(i). Thus R=S.  

In the proof of theorem we use the fact that every n-generated algebra from R has K-WEP. 
So we get

Corollary.  Let R, K are quasivarieties, R ⊆ K and K residually less then n. If any n-generated 
algebra in R has K-WEP, then R has a finite number covers in the quasivariety lattice of K. In 
particular, R is finitely axiomatizable relative to K.
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